SohCahToa

Sine

Sine of angle $A=\frac{O p p}{H y p}$

Cosine

Cosine of angle $A=\frac{A d j}{H y p}$

Tangent

Tangent of angle $A=\frac{O p p}{A d j}$

To find the angle if you know two of the sides...

Divide opp by hyp and then take the inverse sine

$$
A=\sin ^{-1}\left(\frac{o p p}{h y p}\right)
$$

Example: opp is 12 cm and hyp is 24 cm

$$
\begin{aligned}
& \frac{o p p}{h y p}=\frac{12}{24}=0.5 \\
& A=\sin ^{-1}(0.5)=30 \text { degrees }
\end{aligned}
$$

Divide adj by hyp and then take the inverse cosine

$$
A=\cos ^{-1}\left(\frac{a d j}{h y p}\right)
$$

Divide opp by adj and then take the inverse tangent

$$
A=\tan ^{-1}\left(\frac{o p p}{a d j}\right)
$$

Example: adj is 8cm and hyp Example: opp is 5 cm and adj
is 10 cm

$$
\frac{a d j}{h y p}=\frac{8}{10}=0.8
$$

is 7 cm

$$
A=\cos ^{-1}(0.8)=36.8698 \approx 36.9
$$

$$
\begin{aligned}
& \frac{o p p}{a d j}=\frac{5}{7}=0.7143 \ldots \\
& A=\tan ^{-1}(0.7143) \approx 35.5 \mathrm{deg}
\end{aligned}
$$

Multiply a side by the value of the trig function to find another side
$o p p=h y p \times \sin (A)$
$\operatorname{adj}=h y p \times \cos (A)$
$o p p=a d j \times \tan (A)$
Example: hyp is 8 cm and
$\mathrm{A}=40^{\circ}$
$o p p=8 \times \sin (40)$
$=8 \times 0.6428 \approx 5.1 \mathrm{~cm}$

Example: hyp is 10 cm and $\mathrm{A}=80^{\circ}$

$$
\begin{gathered}
\quad o p p=10 \times \cos (80) \\
=10 \times 0.1736 \approx 1.7 \mathrm{~cm}
\end{gathered}
$$

Example: adj is 15 cm and $\mathrm{A}=60^{\circ}$

$$
o p p=15 \times \tan (60)
$$

$$
=15 \times 1.7321 \approx 26.0 \mathrm{~cm}
$$

Divide a side by the value of the trig function to find another side

$$
h y p=\frac{o p p}{\sin (A)}
$$

Sin is always less than one, so hyp comes out longer

Example: $\mathrm{opp}=12 \mathrm{~cm}$ and $\mathrm{A}=25^{\circ}$
$\frac{12}{\sin (25)}=\frac{12}{0.4226} \approx 28.4 \mathrm{~cm}$

$$
h y p=\frac{a d j}{\cos (A)}
$$

Cos is always less than one,
so hyp comes out longer
Example: $\mathrm{adj}=10 \mathrm{~cm}$ and
$A=60^{\circ}$
$\frac{10}{\cos (60)}=\frac{10}{0.5}=20.0 \mathrm{~cm}$

$$
a d j=\frac{o p p}{\tan (A)}
$$

Tan is more than 1 for angles larger than 45°, so just depends
Example: opp $=12 \mathrm{~cm}$ and $\mathrm{A}=70^{\circ}$

$$
\operatorname{adj}=\frac{12}{\tan (70)}=\frac{12}{2.748} \approx 4.4 \mathrm{~cm}
$$

